Four-membered ring cleavage of perfluorinated benzocyclobutene and 1-methylbenzocyclobutene under the action of I_2 -Sb F_5

Victor M. Karpov,* Tatyana V. Mezhenkova and Vyacheslav E. Platonov

Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russian Federation. Fax: +7 383 235 4752; e-mail: root@orchem.nsk.su

Interaction of perfluorobenzocyclobutene with I_2 in an SbF₅ medium leads to the formation of 2-iodoperfluoroethylbenzene and perfluoro-o-xylene; perfluoro-1-methylbenzocyclobutene in the I_2 -SbF₅ system is transformed into perfluoro-2-ethyltoluene.

Previously, we have found that benzocyclobutene ${\bf 1}$ and perfluoro-1-methylbenzocyclobutene ${\bf 2}$ under the action of Br_2 or HF in an SbF_5 medium undergo cleavage of the fourmembered ring to give the corresponding 2-bromo- or 2-H-perfluoroalkylbenzenes. Here we report a substantially different route to the ring opening of benzocyclobutenes ${\bf 1}$ and ${\bf 2}$ in the I_2 – SbF_5 system (about the I_2 – SbF_5 system⁴). We have found that compound ${\bf 1}$ under the action of I_2 in an SbF_5 medium gives not only the cleavage product of the C^{Ar} – C^1 bond of the four-membered ring (as in the case of Br_2 or $HF^{1,2}$), but the product of C^1 – C^2 bond cleavage as well. At the same time, compound ${\bf 2}$ undergoes only of the C^1 – C^2 bond cleavage.

Thus, when heated with I_2 in an SbF $_5$ medium, compound ${\bf 2}$ is transformed to perfluoro-2-ethyltoluene ${\bf 3}^{\dagger}$ (Scheme 1). Under the same conditions compound ${\bf 1}$ gives perfluoro-o-xylene ${\bf 4}$ together with 2-iodoperfluoroethylbenzene ${\bf 5}$. In addition to these products, the reaction mixture contained perfluoro-2-(1-benzocyclobutenyl)ethylbenzene ${\bf 6}$, perfluoro-2-(1-hydroxy-1-benzocyclobutenyl)ethylbenzene ${\bf 7}$, perfluoro-2-ethyl-2'-methyldiphenylmethane ${\bf 8}$ and perfluoro-2-ethyl-2'-methylbenzophenone ${\bf 9}^{\ddagger}$ (Scheme 2).

Compound 6 is formed as a result of dimerisation of benzocyclobutene 1 in an SbF_5 medium.¹ Compound 8 seems to be the product of further transformations of dimer 6 under the reaction conditions (these transformations did not proceed under the action of SbF_5 at 90 °C in the absence of I_2). It may be suggested that oxygen-containing compounds 7 and 9 are the hydrolysis products of cation salts, which seems to be formed from precursors 6 and 8 in an SbF_5 medium (cf. refs.5,6).

Scheme 3

Formation of compound $\bf 5$ from benzocyclobutene $\bf 1$ under the action of I_2 in an SbF $_5$ medium may be represented by a scheme similar to that for reactions of polyfluorobenzocyclobutenes with Br $_2$ or HF in an SbF $_5$ medium. $^{1-3}$ One of the possible routes of transformation of compound $\bf 1$ to xylene $\bf 4$ in the I_2 –SbF $_5$ system includes intermediate formation of cation $\bf 10$ (Scheme 3). The latter may be considered as a heteroatomic analogue of perfluorobenzocyclobutenylalkyl cations for which a similar mechanism of four-membered ring cleavage was discussed.

We gratefully thank the Russian Foundation for Basic Research (project no.95-03-08374a) for financial support.

References

- V. M. Karpov, T. V. Mezhenkova, V. E. Platonov and G. G. Yakobson, *Bull. Soc. Chim. Fr.*, 1986, 980.
 V. M. Karpov, T. V. Mezhenkova, V. E. Platonov and L. N.
- V. M. Karpov, T. V. Mezhenkova, V. E. Platonov and L. N. Shchegoleva, Izv. Akad. Nauk SSSR, Ser. Khim., 1991, 2618 (Bull. Acad. Sci. USSR, Div. Chem. Sci., 1991, 40, 2292).
- 3 V. M. Karpov, T. V. Mezhenkova and V. E. Platonov, J. Fluorine Chem., 1996, 77, 133.

‡ Typical experimental procedure. Benzocyclobutene 1 (5.07 g, 20.4 mmol) was added to a stirred solution of 5.18 g (20.4 mmol) I_2 in 31.0 g (143 mmol) of SbF_5 . The mixture was stirred for 5 h 45 min at 90 °C, then cooled to −10 °C, treated with 6 ml of anhydrous HF and poured on to ice cooled with liquid N_2 . The mixture was then extracted with CH_2CI_2 and the combined extracts dried over $MgSO_4$. The solvent was distilled off to give 4.08 g of a mixture containing (GLC, ^{19}F NMR spectrum) 20% of ethylbenzene 5, 28% of xylene 4, 6% of dimer 6, 4% of product 7, 17% of diphenylmethane 8 and 22% of benzophenone 9. Individual compounds 4–9 were isolated by preparative GLC. The ^{19}F NMR spectra of compounds 4 and 6 are in agreement with those reported in literature. New compounds 5, 7–9 exibited sutisfactory analytical data.

¹⁹F NMR spectra, (δ/ppm downfield from C₆F₆ as internal standard).
5 (in CCl₄, 56.4 MHz): 78.2 (CF₃), 58.3 (F-3), 55.5 (CF₂), 32.2 (F-6),
16.7 (F-4), 11.2 (F-5), J_{E,6 CE}, 40 Hz (*cf.* ref. 1).

16.7 (F-4), 11.2 (F-5), $J_{\text{F-6, CF}_3}$ 40 Hz (cf. ref. 1). 7 (in CDCl₃, 188.3 MHz): 81.4 (CF₃), 62.5 (F_A) and 51.2 (F_B, CF₂CF₃), J_{AB} 285 Hz, 68.5 (F_A) and 56.8 (F_B, CF₂), J_{AB} 220 Hz, 33.4 (1F), 27.7 (1F), 26.1 (1F), 24.6 (1F), 18.9 (1F), 16.1 (2F), 13.2 (1F).

8 (in CHCl₃, 188.3 MHz): 108.7 (CF₃), 92.3 (CF₂), 80.7 (CF₂CF₃), 62.5 (F_A) and 59.4 (F_B, CF₂CF₃), J_{AB} 280 Hz, 35.0 (1F), 30.6 (1F), 30.1 (1F), 29.3 (1F), 17.0 (1F), 15.8 (2F), 15.3 (1F).

9 (in Me₂CO, 56.4 MHz): 109.6 (CF₃), 80.9 (CF₂CF₃), 59.7 (CF₂CF₃), 17.9–15.2 (4F), 32.0 (1F), 29.1 (1F), 27.1 (1F), 25.9 (1F).

[†] Compound 3 was described by us earlier. ¹

- (a) R. D. W. Kemmitt, M. Murray, V. M. McRae, R. D. Peacock, M. C. R. Symons and T. A. O'Donnell, J. Chem. Soc. A, 1968, 862; (b) C. G. Davies, R. J. Gillespie, P. R. Ireland and J. M. Sowa, Can. J. Chem., 1974, 52, 2048.
- V. M. Karpov, T. V. Mezhenkova, V. E. Platonov and G. G. Yakobson, *J. Fluorine Chem.*, 1985, **28**, 121.

 Yu. V. Pozdnyakovich and V. D. Shteingarts, *J. Fluorine Chem.*, 1974, **4**, 317.
- V. M. Karpov, T. V. Mezhenkova, V. E. Platonov and G. G. Yakobson, Izv. Akad. Nauk SSSR, Ser. Khim., 1990, 1114 (Bull. Acad. Sci. USSR, Div. Chem. Sci., 1990, **39**, 1000).

 8 F. A. M. Ayanbadejo, Spectrochim. Acta, 1969, **25A**, 1009.

Received: Moscow, 15th August 1996 Cambridge, 11th November 1996; Com. 6/05864G